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Abstract

This paper introduces fundamental dynamics and control strategies for aseismic structural control, especially fo-
cusing on excitation influence and nonlinear effects. Firstly, fundamental structural dynamics with control forces under
a seismic excitation are introduced. Then, as a basic strategy for structural control, the effects of linear feedback control
laws are reviewed. Next, introducing the least quadratic regulator (LQR) considering excitation influence, the least
input energy control and the LQR for short term under given excitation information, roles of the FB, instantaneous
counter-reaction and feedforward (FF) terms are clarified. Furthermore, it is inferred that it is difficult to explicitly solve
the optimization problems positively considering control force limit, and the Euler equations for the optimal variable-
element control become nonlinear. It is also shown that we can construct an extended FB control law assuming a state
equation model for excitation information. Then, not only an additional damping effect but also a dissonant effect on a
seismic excitation are anticipated. Furthermore, sufficient stability conditions for nonlinear control laws are introduced.
Finally, as examples of nonlinear control laws, nonlinear velocity FB laws and nonlinear Maxwell-type control laws are
introduced. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction
1.1. Background

A large catfish deep in the earth quakes the ground, thus shaking houses. Even when people believed it,
carpenters knew that a tall pagoda is imparted less motion from the ground than a small house, and that
complicated combinations of wooden elements resolve its sway. Even for an ambiguous earthquake, ex-
citation influence and nonlinear effects were considered in structural design a thousand years and more ago.
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Later, Newtonian mechanics served engineers a mighty card. Based on the relativity principle, seismic
influence was expressed as an inertia force caused by ground movement. Because the size of ground
movement was still indefinite, the inertia force scale was guessed as a certain ratio to the gravity. Aseismic
elements such as stiff shear walls were installed in structures to statically resist lateral loads due to the
assumed inertia force. These aseismic elements were designed to be linear for lateral loads. A simple cal-
culation method rather than purely experience was applied to complex structures, which enabled structures
to be comprised of frames of several spans. However, the structure should be stiff so as not to largely
deform under lateral loads. Thus, a high or long-span structure could not be designed.

Engineers studied dynamical excitation influence based on the linear vibration theory. A seismic exci-
tation possessing large power at a structure’s natural frequency produces enlarged structural responses, due
to resonance to the seismic excitation. However, if a structure’s natural frequency is dissonant to the ex-
citation’s dominant frequency, it is less influenced by the seismic excitation. Structural responses largely
depend on the dynamical characteristics of the seismic excitation. Spectrum analyses of the seismic record
for El Centro, California for the Imperial Valley earthquake in 1940 showed that a flexible tall building is
exposed to less excitation influence because of its long natural period. This meant that we could build a
high-rise building even in Japan.

The first high-rise building in Japan, the Kasumigaseki Building, has nonlinear elements, i.e., slit walls,
which behave inelastically and follow the large deformations of a flexible building and resists lateral loads
due to a seismic excitation. This idea is reflected in recent design codes, which allow buildings to experience
inelastic deformation under extremely large earthquakes. Progress in computation has also helped to take
into account inelasticity in design. By regarding a seismic load as a dynamic excitation, structural responses
to an assumed seismic excitation can be simulated from time to time today.

Many special devices as well as structural elements are nowadays installed in many structures, aimed at
reducing seismic response. Passive control devices such as elastic—plastic metal devices are used for energy
dissipation by nonlinear hysteretic damping. Devices such as base isolation systems are anticipated to
reduce responses by a dissonant effect to seismic excitation. Active control systems using mechanical devices
such as actuators can also reduce structural responses. However, if they follow a linear control law, they
require large external power and a large control system for structural control under large earthquakes. In
practice, such large external power and control system cannot be provided. Thus, an active control system
should be developed to consider various constraints. Otherwise, semi-active control systems, which produce
controlled forces by changing parameters, will substitute for them. If we can deliberately change structural
stiffness, a structure will be exposed to less energy from a ground quake. If the damping coefficient of a
damping element can be changed, a load in a structural element could be adjusted to satisfy mechanical
constraints. Structural dynamics and a control law for them are then nonlinear.

Regardless of whether the system is passive, active or semi-active, aseismic structural control enables
design freedom. Because a control system can manage most lateral loads caused by a seismic excitation,
structural elements should support only vertical loads due to gravity. Thus, beams and columns could be
slender. A long-span space or a super-high-rise building can be planned. Simple design details for each
structural element would improve construction productivity. Structural control serves us with not only
mechanical advantages but also benefits in design and construction. Furthermore, structural control is
indispensable for the future urban society. The Hyogoken—Nanbu earthquake in 1992 demonstrated to us
that the function of an urban society should be immediately restored even after an extremely large
earthquake. Otherwise, the earthquake will influence not only the immediately damaged area but also our
global society. We should not allow irremediable structural damage. The future urban society should
maintain its functions under any earthquake, using structural control.

However, research and development (R&D) on structural control to a seismic excitation is not a simple
project because of excitations’ ambiguity and scale. In most R&D on structural control, linear control
theories for stationary or free vibration states have been applied. Thus, this has inevitably created a con-
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tradiction. To overcome this problem, we should consider excitation influence and nonlinear effects as the
ancient carpenters did.

1.2. Subjects for aseismic structural control

Based on the above, the following subjects need to be considered in developing aseismic structural
control strategies:

(1) A seismic excitation must be regarded as a nonstationary, narrow-banded wave with uncertainty. It is
never just a disturbance or a white noise. Neither is it a stationary wave. Its dynamical characteristics
greatly influence structural dynamics.

(2) Lateral loads of up to 1 g influence a structure in an extremely large seismic event. The total weight of
a building is generally thousands of tons. According to the present design code, a building must be in the
elastic range under lateral loads due to a seismic excitation, which amounts to about 20% of its weight at
the basement. The response at the top of the building is in most cases amplified to two to five times that at
the bottom. We must develop control systems that can control these loads.

(3) A seismic excitation of a few seconds to a few minutes is relatively short, compared to structural
natural periods, so that a control force must quickly act on the structure. As the primary purpose, we
should reduce maximum structural responses to a seismic excitation, aiming at avoiding structural collapses
and reducing lateral design loads. However, the maximum responses occur near maximum excitations and
there is not enough time to produce stationary resonant states.

(4) A structure such as a high-rise building is flexible. Many degrees of freedom (DOFs) are required to
express structural motion under a seismic excitation. For example, to analyze the motion of a 50-story
building in three dimensions, at least 150 DOFs are necessary, resulting in heavy computational tasks.

(5) Structural stiffness, weight, and damping involve uncertainty. These values for a completed structure,
confirmed by a vibration test, differ from the design values. The partition wall stiffness may shorten
structural natural periods of small amplitude, while yield of structural elements would lengthen those of
large amplitude. Furthermore, weights are variable at each floor. Thus the control strategies are required to
be robust.

Therefore, we must develop aseismic structural control strategies, (a) reflecting dynamic characteristics
of excitation, (b) using a control system considering structural scale and requiring a small amount of ex-
ternal energy, (c) quickly reducing maximum responses in a transient state, (d) requiring few computational
tasks, (e) being robust against fluctuations of structural characteristics.

1.3. Previous works

In 1950s, the authors (Kobori and Minai, 1955a,b; Kobori, 1956; Kobori and Minai, 1960a,b) intro-
duced basic ideas of structural control, based on the nonlinear vibration theory. That is, to reduce struc-
tural responses to a seismic excitation, we: (1) shut-off energy transmission routes subjected to a seismic
excitation; (2) isolate frequency bands of structural nature from those of a seismic excitation; (3) utilize a
nonstationary and dissonant system with nonlinear characteristics; (4) use an energy dissipation mecha-
nism; and (5) produce a control force on the structure. It was also inferred that inevitable nonlinear be-
haviors, as represented by elements’ yielding, can avoid a structural collapse due to an earthquake, while
artificial nonlinear procedures can ensure even structural functions against it. Furthermore, based on these
ideas, combining a pretension wire and a twisted wire, which possess softening and hardening character-
istics, respectively, can reduce structural responses, although mechanical technology in that period could
not realize it. However, fundamental attitudes to control strategy development do not differ from these
ideas even today.
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From the end of the 1960s to the 1970s, more concrete ideas were proposed along with advanced me-
chanical and analytical technologies. Mahmoodi (1969) and Kelly et al. (1972) showed that we can install
special devices as well as structural elements to reduce structural responses to seismic excitations. Yao
(1972) introduced the idea of reducing structural responses by an external force, which controls a civil
engineering structure like a machine. Yang (1975) applied the modern control theory to a civil engineering
structure. Rooda (1975) assumed tendon control systems in tall structures. Martin and Soong (1976) ex-
amined modal control of structures. Abdel-Rohman and Leipholz (1978) proposed control strategies using
a pole assignment method. Masri et al. (1981) studied pulse control of structures.

Later, as reviewed by Soong (1988), R&D of structural control has proceeded vigorously, especially since
the 1980s. Soong (1990), Kobori (1993a), and Soong and Darguch (1997) summarized theories and
practical applications at that time. Kobori et al. (1986) called a response controlled structure a dynamic
intelligent building, comparing it to a human body. As the most fruitful achievement, the first actual ac-
tively-response-controlled building, using active mass dampers, was completed in 1989. Kobori et al.
(1991a,b) confirmed that the active mass dampers reduce lateral and torsional swaying under small seismic
and wind excitations. Successively, in 1990, Kobori et al. (1993b) installed an active variable stiffness system
in an actual building to reduce structural responses to seismic excitations, anticipating a dissonant effect.

R&D in the 1990s has focused on making control systems more effective under large seismic excitation
and more applicable to any structure. Housner et al. (1994) and Kobori (1996) showed the directions of
future R&D on structural control. Kobori et al. (1992) also claimed that structural control technology is
indispensable for a super-high-rise building. Housner et al. (1997) reviewed semi-active systems, active—
passive hybrid systems, nonlinear systems and new material dampers. We should note that the structural
dynamics with these developing systems have become so complex that advanced control strategies are
required. Along with these streams, this paper reviews fundamental control strategies and then introduces
the directions for developing control strategies, especially considering excitation influence and nonlinear
effects.

In practice, nonlinear control strategies are adopted when various constraints must be considered. For
example, the control force must be influenced by the control system. It may follow variable gain laws, or
possess saturated values. Kobori et al. (1991b) proposed a simulation method for structural responses to
seismic excitations, considering the control system’s dynamics and the nonlinear element’s influence.
Tamura et al. (1994), Nagashima and Shinozaki (1997) and Yamamoto and Suzuki (1998) applied variable
gain control to mass dampers. Nakagawa and Asano (1995) and Niwa et al. (1995) examined cases where
maximum control forces are limited. Nishitani and Nitta (1998) and Bharta et al. (1994) considered mass
dampers’ constraints. Wu and Soong (1996), Mongkol et al. (1996), and Chase et al. (1996) examined the
structural performance where control forces acting between stories have saturated values. Yang et al. (1996)
and Tomasula et al. (1996) introduced optimal control laws, assuming higher-order norms. Yamada (1998)
also studied the performance of more general nonlinear velocity feedback (FB) laws. Another approach is
to follow hysteretic rules. Yang et al. (1994a) proposed a control force that follows a hysteretic rule. Yang
et al. (1995) also introduced a hysteretic control force based on a sliding mode control. Soong (1998)
described an algorithm for experimental simulation of a control force that plots Bouc—Wen hysteretic
curves (Bouc, 1971; Wen, 1976). Bani-Hani and Ghaboussi (1998) introduced a hysteretic control force
based on neural network theory. Yamada (2000) proposed a simpler control law based on a differential
model for hysteresis.

Semi-active control systems are more practical because they require little external power. Chung et al.
(1989), Ikeda and Kobori (1991), Tachibana et al. (1994), Loh and Ma (1994) and Yamada and Kobori
(1995) theoretically and experimentally demonstrated that a variable stiffness structure can reduce struc-
tural responses to seismic excitations. Furthermore, Kobori et al. (1993b) demonstrated the control effect of
the variable stiffness elements (VSEs) installed in an actual building. A variable damping element (VDE)
can also control a reactive internal force in the range of the VDEs capacity. Feng and Shinozuka (1990) first
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discussed VDESs’ effect on structural responses. Then, Kawashima et al. (1992), Kurata et al. (1994), Patten
et al. (1994) and Symans et al. (1994) developed actual VDEs and examined their performances experi-
mentally. Kurino et al. (1996) and Haroun et al. (1994) modeled VDEs’ dynamics and examined their effects
by simulation analyses. Polak et al. (1994) evaluated achievable and acceptable effects by VDEs. Sadek and
Mohraz (1998) showed that VDEs’ effects depend on structural natural frequency. To be more effective,
Hayen and Iwan (1994), Iwan and Wang (1996) proposed nonlinear control laws for the VDEs based on
more energy dissipation. Hatada and Smith (1997) introduced a control law for VDEs, considering their
maximum capacity. Yamada (1999a) also proposed a nonlinear control law by adding a simple nonlinear
term into the control force vs. velocity relation. We should note that dynamics considering these semi-active
control systems are nonlinear.

Therefore, the more practical the control system, the more its nonlinearity should be considered. That is,
to develop a more practical control system, a deeper knowledge of nonlinear dynamics and control
strategies is required. The recent mathematical methods and results on nonlinear dynamics as shown in
many literatures such as those by Guckenheimer and Holmes (1983), Wiggins (1990) and Jackson (1991)
tell us that even a small nonlinear term may globally produce quite complex phenomena. In other words, it
may be possible to express complex phenomena by a simple nonlinearity. Moon (1992) showed many
examples of complex phenomena in mechanics caused by nonlinearity. We can not only mathematically
analyze such complex phenomena, but also positively apply them to engineering. As is well known, the Van
del Pole oscillator produces a stationary vibration as a disturbance subjected to nonlinearity. In aseismic
structural control, we expect nonlinearity to be effectively taken into account in structural dynamics, thus
realizing our design purposes under practical constraints. Regardless of the object for which we adopt
nonlinearity, the variational principle (Arnonld, 1978), the maximum principle by Pontryagin et al. (1961)
and the dynamic programming by Bellman (1957) are fundamental for developing a control strategy. The
Lyapunov function, as introduced by Lasalle and Lefshetz (1961), is useful for examining stability and
constructing a stable control law. Popov’s criterion and the circle criterion (Kahlil, 1992), are fundamen-
tal even for structural control. To develop a nonlinear control strategy, the indirect control method
by Lefshetz (1965), which expresses a control strategy by a differential equation, is also useful. Therefore,
this paper introduces fundamental control strategies, applying these procedures to aseismic structural
control.

Simultaneously, to make more thorough use of control system ability, research that considers more
excitation influence as well as nonlinear effects has proceeded. The least quadratic regulator (LQR) is
widely used and many active control systems basically follow it. This is because it is not only theoretically
clear and robust but also explicitly provides states at a certain moment, which means that structural re-
sponses to a seismic excitation can be obtained. However, the LQR is induced assuming that the excitation
term is neglected or of a white noise. For aseismic structural control, a better strategy should be developed.
Thus, to reduce excitation influence, Smith and Chase (1994), Yoshida et al. (1994), Yang et al. (1994b),
Jabbari et al. (1996), Yamada and Nishitani (1996), and Kose et al. (1996) applied H,, control law theory.
While, we can more positively consider excitation information. Yang et al. (1987) proposed instantaneous
optimal control, considering instantaneous excitation influence. Nishimura et al. (1992) and Sato et al.
(1994), Wu et al. (1994), and Dyke et al. (1994) proposed acceleration as well as velocity FB. Suhardjo and
Spencer (1990) proposed a feedback—feedforward control algorithm (feedback—feedforward, FB-FF), in-
troducing a filter for the excitation. Naraoka and Katsukura (1992) studied the response characteristics
when such FB-FF control algorithms controlled a structure. Shing et al. (1996) compares the FB-FF
control with FB control. To take full account of future excitation influence, Fukazawa and Kawahara
(1988) introduced a control law assuming that all future excitation information has been provided.
However, this is not practical. Then, using the online identified AR model of excitation information,
Yamada and Kabori (1996) extended the LQR. Thus, future excitation influence is taken account of in a
practical way. Yamada and Kobori (1994) also showed that a control law minimizing input energy requires
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future excitation information. This paper reviews these strategies and examines them considering excitation
influence.

1.4. Outlines

In response to these subjects, Section 2 first presents fundamental dynamics for aseismic structural
control. It then introduces momentum equations and their modally decomposed forms, the state equation
and its discrete form, and the energy balance equation, and discusses how the control force influences
structural dynamics. Section 3 reviews the formulation and control effects of linear FB control laws, which
are fundamental for any control strategies. To obtain hints on how to determine the gains for the linear FB
laws, Section 4 examines optimal control laws for a seismic excitation, assuming that future excitation
information is already known. However, this is shown to be impractical, so Section 5 introduces the ex-
tended FB control laws and the extended LQR (ELQR), assuming a state equation model of excitation
information. Next, Section 6 examines optimization problems for cases positively considering control force
limit and variable elements. Furthermore, Section 7 introduces sufficient stability conditions for nonlinear
control laws. Lastly, as examples of nonlinear control laws, Section 8 introduces nonlinear velocity FB laws
and nonlinear Maxwell (NMW)-type control forces.

2. Structural dynamics under seismic excitation
2.1. Control systems for aseismic structural control

Fig. 1 shows various control systems for reducing seismic structural responses. Active mass damper
systems, active base isolation systems and active tendon systems provide control forces, using hydraulic
actuators or servo motors. With an active mass damper system, a quickly moving small mass imparts a
control force to a structure. With the active base isolation system, the ground supports the reaction to the
control force. With the active tendon system, one control force is imparted at two points in a structure by
the action and reaction principle. These control systems require not a little external power. However, semi-
active control by variable elements such as VSEs, switching stiffness elements, VDE with auxiliary stiffness
elements (ASEs), and so on, can impart large controlled forces with little external power. Because these

@ ©

i
i
AR

(d) (e) ®

Fig. 1. Various control systems: (a) active mass damper system; (b) active base isolation system; (c) active tendon system; (d) VSEs; (e)
switching stiffness elements; (f) VDE with ASE.
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elements provide structural natural frequency change as well as hysteretic damping, we can expect them not
only to dissipate structural vibration energy but also to expose a structure to little seismic energy.

2.2. Structural dynamics

Let us consider an nDOF structural model with m control forces. The structural dynamics is then ex-
pressed as:

My"(t) + Cy'(t) + Ky(t) = —MVw(t) + Uu(t), (2.1)

where y"(¢), y'(¢) and y(¢) € R" represent the structural acceleration, velocity and displacement at time #
relative to the structural basement, respectively; w(f) € R represents the acceleration at the structural
basement excited by a seismic event; u(¢) € R” represents a control force vector, whose component indicates
a control force produced by a control system; M, C and K € R™" represent mass, damping and stiffness
matrices of the model, respectively; V € R” indicates the DOFs where the seismic excitation acts; U € R™"
represents the DOFs where the control forces act; and R” and R”*" indicate a p-dimensional vector and a
p X r dimensional matrix.
The structural dynamics with the controlled forces provided by the VSE and so on is expressed as:

MY (1) + CY'(t) + Ky(t) + Un(t) = —MVw(?). (2.2)

Since we can convert the Un(¢) term to the right-hand side and change the sign of u(¢), Egs. (2.1) and (2.2)
are mathematically equivalent. Thus, the case expressed by Eq. (2.1) is mainly analyzed in this paper.
Example 2.1: model-S
As an example, consider an SDOF model whose mass, damping and stiffness are m1, ¢ and k, respectively.
Then, letting natural circular frequency w and a damping factor & be @ = \/k/m and h = ¢/(2w), respec-
tively, the structural dynamics is express by:

V'(t) + 2howy (1) + @®y(t) = —w(t) +m~ " u(t). (2.3)

Example 2.2: model-M
As an example of an MDOF model, let us assume a 3DOF model that comprises three masses and inter-
story springs, as shown in Fig. 2. To let the control forces act between DOF, Uu(z) is defined by:

1 0 0 ul(t)
Uu(t)= | -1 1 0]< wft) ». (2.4)
0 -1 1 3(2)

<

Y1

ki
Y2

u; kz

I_' ] ms ¥

ks

> w(t)
Fig. 2. MDOF model with control force.
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2.3. State equation

Eq. (2.1) can be converted to a so-called state equation:

x'(t) = Ax(t) + Dw(t) + Bu(t), (2.5)
where
x(1) = {i((tt))} A= [—MllC —MO‘K} D [—OV} B_ [MOIU}

ie, x(t) € R, A € R, D € R* and B € R*™".
When all the eigenvalues of 4 in Eq. (2.5) are less than 0.0, which is called a Hurwitz matrix, we have:

E(t)=exp(td) =1 +tA + A2+ - - (2.6)
Then, structural responses at ¢ are obtained for the initial condition x(¢) as:
x(t) = E(t —to)x(to) + (E"Dw)(¢t, 1) + (E"Bu)(t, 1)), (2.7)
where * indicates the convolution:
t t
(B f)(t, ) = / Er—t)f(t—1)dr = / E(t—1)f(t — tp)dr. (2.8)
to fp

Eq. (2.5) can be discretized at ¢ = r Az, assuming sampling time Az
x(r+ 1) = Ax(r) + Dw(r) + Bu(r), (2.9)

where 4 = E(Ar), D = (£'D)(At,0), B = (E*B)(At,0); and x(r), u(r) and w(r) indicate values at step r.
Example 2.3: discrete SDOF model
For the SDOF model expressed by Eq. (2.3), we have:

—-mle —-m 'k —2hw —w? -1 m~!
ol e S e I S by O Y
Let us assume:

YTy 1 , ,
M,bzw(—hii l—hz), Ay = exp (L AtL), Ay = exp(hAr), anch:7§{/i1 /“2}.

1
Then,
A= exp(AAr) = ddiag{ 4, A} 7' = ! Ay —doly Tada(Ay — A)
M—ro| A=A Ay = Jad,

(E°1)(At,0) = 1 Mla(A] — Ao) Ala{ (1 — Ay) — ;v](l — A}
= ’ IndGa —Ja) [ (1= A2) = da(1 = Ay)  —i7(1 =) +5(1—Ay) |
. 1 Mla(A] — A3) ] - 1y
D——— B=—-m'D. 2.10

)»112(/11 - /Lz) |:/11(1 - A2) - )v2(1 - Al) ’ " ( )

2.4. Mode decomposition

Let us estimate control force influence on the ith mode, assuming that M~'C can be decomposed by
eigenvector @, with ¢! ¢, = 1. By multiplying T M ' to Eq. (2.1):
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@[y (1) + o] M Cop[y' (1) + o] M Ko, y(t) = —¢ Vw(t) + o] M~ Un(1). (2.11)
By expressing U = {..U,..}, the ith mode y;(¢t) = ¢ y(¢) is governed by:

¥7"(8) + 2oy (1) + @7y (1) )+ Z%% (2.12)

where the ith natural circular frequency: w?> = ¢! M 'K¢,,

the ith modal damping: #;, = o] M ' Co,/2w;,
influence factor of the jth control force on the ith mode: o, = ! M~'U,,
participation factor of the excitation to the ith mode: ; = ] V.

Thus, we should note that control force locations largely influence control effects, regardless of control
laws.
By multiplying {¢] ¢} to Eq. (2.5), the state equation is decomposed to:

10 = (oo = {21101, 1)

where

w0 = tololx = {204 = (atenya{ 0h = [ e ot

. —p, . o .. o . Olim
D :{(,,jq,}}p:{ oﬁ } B ={o;p/}B = {01 00 0 0 ]

The contents of B} imply that acceleration, i.e., velocity increment, has direct influence of the control force,
while displacement is controlled via velocity.

Eq. (2.13) can be converted to a pair of complex conjugates z;(¢) and z; (), using ® = {-- ¢, - -},
P =1,

DX () =P A PD X} (1) + DT Diw(t) + P Bu(t). (2.14)
Letting @"x7(1) = {z/()z; (1)} and i = v/—1

;

z (0,7 (1) =5y (1) £1 1) + hiwy; (1)) (2.15)

20 \/1—h2 o'l

z:.”(t):wi(—hi+i\/1—hf)z}‘(l)—i—'zw\/l_( Bow(t +Zcxl,u, ) (2.16)

Thus, the control force acts on the response z; via an imaginary unit.

2.5. Energy balance

By multiplying Eq. (2.1) by y’(t)T and integrating the result from ¢, to ¢, the energy balance from time 7,
to #; is obtained:
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U tl COREORSOR ) dt} - U R0 df]

: [ / . y’(t)TMVw(t)dt} + [ / ' y’(t)TtOUu(t)dt} (2.17)

The terms in brackets are called the vibration, damping, excitation energy and control force energy from ¢,
to t,, respectively.
And, by applying Leipniz’s rule to the first term, we have:

w0+ ) B + | [ yerarwal + - [1yo o]

= {/{0” — Y ()" MVw(7) dt} + By’(to)TMy’(tO) +%y([0)Ky(t0)} (2.18)

The right-hand side indicates the input energy from ¢, to ¢;.
To obtain the same results from the state equation, let:

P= [1‘04 I‘;] (2.19)
Then, by multiplying Eq. (2.5) by x(t)TP and integrating the result from time ¢, to ¢;, we have:
/ " e P (1) dt — / " e(0) PAx(r)dr + / " ()T PDW(t) di + / " ()" PBu(r) dt, (2.20)
1 1 ) )
where:
s = oo |y g [{5 = reomo e e,

[ PR de = 3 ) MY () + (0 Bo0) 53/ 0) M (0) — 33(0) K ),

fo

st = oo |y g] |7 T - vorere

s Pout) = 0o | g {7 o = v,

M o0][M'U
o Pu) = /003 |y || My Y u =y, 221)
Thus, the term in the left side of Eq. (2.20) indicates the difference between the vibration energies at ¢, and

to. On the other hand, each term in the right-hand side represents the integration of the damping, excitation,
and control force energy, respectively.

2.6. Structure with Maxwell elements
In the foregoing, control forces even by a semi-active system are assumed to act directly on a structure.

However, a damping element must often be installed in a structure via an ASE, thus composing a Maxwell
element, as shown in Fig. 3. Even if it is directly attached to structural elements, we should consider its
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Fig. 3. MDOF model with a Maxwell element.

stiffness. It is thus important to examine the basic performance of a structural model with Maxwell ele-
ments.

Let us assume an SDOF structure with a Maxwell element. The values g and # represent the stiffness of
an ASE and the damping factor of a damping element.

my" (1) + /(1) + ky(0) + u(t) = —mw(0), u' (1) = &' () — (g/mu(). (2.22)

where u(¢) indicates a force occurring in a Maxwell element.
By a state equation,

a[Y® —c/m  —k[m —1/m| ( y(1) -1
@ y() 3= 1 0 0 y(@) p+49 0 sw() (2.23)
u(?) g 0 —g/n] Lu() 0
The eigenvalues of the matrix in the above provide a natural circular frequency 4. Then,
A3+(5+§>‘2+<§5+1g+£>1+gﬁ_0, (2.24)
m nm m m nm
Assuming a = (¢/m) + (g/n), b = (g/n)(c/m) + (1/m)g + (k/m) and d = (g/n)(1/m), solutions are
, 1 a .\3 a
MJz:E(e‘*‘f)_gilT(e—f)’ )~3=e+f—§7 (2.25)
where

e=al, f=BP ap=(—qx V)2 p=(b-a),
q = (2b° — 9bc + 274d).
The most important circular frequency w;, natural period 7, damping factor /; are given by:
w; = |)u1 |, Tl = 2TC/i1’I’1(:lg(/11)7 hl = real(}nl)/|/11|. (226)

Example 2.4 Fig. 4 shows T, and h, for m=1, ¢ =0.02r, k =4n?, g =4n?, 8n’> and 16n%, and
n = 0.5-2.0. The structural natural periods as well as the damping factors change, depending on the
damping coefficient in a Maxwell element. Thus, we have the optimum damping coefficient for achieving
the highest damping effect.
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Fig. 4. Natural period and damping factor of a structure with a Maxwell element.

To examine general natures, we should scale Eq. (2.22), assuming;:

c=2hmw, k=mo? g=ma’g", n=mon’, ult)=mo’u'(t), t=wt () =o().

That is,

(1) + 2hy(t) + 0*p(1) + u' (7) = — —w(1), (2.27)

w2

i(t) = g"y(t) — (&"/n )’ (). (2.28)
Thus, g and 5 have influence of w? and w, respectively.
In the same way as for an SDOF model, let us assume an MDOF structural model equipped with VDE
via ASEs, which compose NMW elements. By assuming that g; and 5, represent the stiffness of the jth ASE
and the damping coefficient of jth damping element, the structural dynamics are expressed by:

My"(t) + CY' (1) + Ky(1) + Un(t) = —MVw(t), (2.29)

u(t) = GU'Y (t) — E(t)u(t), (2.30)

where G = diag{g;}, E(¢) = diag{g;/n,(¢)}, U indicates the DOFs where Maxwell elements are attached;
and diag{ } composes a diagonal matrix of a vector { }.
To obtain an energy equation, let us multiply Eq. (2.29) by y'(r)" and Eq. (2.30) by u(s)' G™":

Y (@) My" (1) + ' (1) ' () + ¥/ (6) Ky (1) + 5 (1) Un(t) = =/ (1) MV w(z), (2.31)

u()'G ' (t) = u(t)" U Y (t) — u(t)" G E(t)u(r). (2.32)
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By substituting Eq. (2.32) into Eq. (2.31), and integrating the result from ¢, to #;, we have:

|

3 M @) 450 B @) )6 )]+ [y O [ a6 Bu a

to fo

- { / oMY dt} + % [y/(fo)TM.V/(to) +(10)Ky(ty) + u(to)G_lu(to)} . (233)

to

Thus, as far as G > 0 and E(¢) > 0, the energy is dissipated by NMW elements even if E(¢) is variable.

3. Linear feedback control laws
3.1. Linear state feedback laws

Let us consider a control force vector produced by linear state FB laws as:
u(t) = —G(1)x(1) + g(t)w(t) = =G (1)y'(1) — Ga(1)y(t) + g(O)w(1), 3.1)

where G(t) € R™", G,(t) € R™", G4(t) € R™" and g(t) € R" represent the gains to state values, velocity,
displacement and excitation, respectively.

By putting Eq. (3.1) into Eq. (2.1), we obtain:
My (1) + (C + UG,(1))y' (1) + (K + UG4(1)y(t) = —(MV — Ug(1))w(?). (3.2)
The energy balance from ¢, to #; is:

o)+ 3y et + | [voraral +{ [ vove oy

fo fo

. { /" V(O UG (0)p(0) dt} + { /tl — ¥y (1) Ug()w(?) dt}

to fo

- [/tl —y/(l‘)TMVw(t)dt] n By’(to)TMy/(to) +%y(to)TKy(to)} -

]

The terms in braces are called the control force energies produced by the velocity, deformation and exci-
tation FB, respectively. Then, assuming certain gains, let us analyze linear FB control laws.

3.2. Velocity feedback laws

Let UG, (1) be positive definite. Then, y'(r)" UG, (¢)y'(¢) is always nonnegative, so that the control force
continuously dissipates vibration energy. Because of their robustness and time independency, the velocity
FB laws are widely used.

3.3. Deformation feedback laws

From the viewpoint of energy dissipation, let us find an appropriate Gy(z). If we assume that
UG, (t) = (UG4(t))", the problem is easier. Such gain is defined by:
Gqy(t) = Py(t)U", (3.4)

where Py(t) = Py(t)" € R™", i.e., deformations between the locations where the control forces act are fed
back.
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Then,

1 n a1
[ @M uGara = | o vrouy0| - [ e urnuyo (33)
to ty fo
The second term in the right-hand side with P/ (7) <0 suggests energy dissipation from 7, to #; while that
with P} (r) > 0 works negatively. Thus, for energy dissipation, softening is preferable to hardening, or the
change with P)(7) > 0 should be done quickly or while y(¢) is small.

If P(¢) > 0, a quick change APy = Py(t, + At) — Py(t,) at t, will keep deformation, i.e., y(t, + At) ~
»(t,), so that:

1 1 1
3ot + AN'UPy(t, + AU y(1, + Ar) — 3 y(t) " UP4 (1) U y(1,) ~ 3 y(t.) " UAP U y(1,),

ta+AL 1 T , T T ta+AL 1 .
[ pereruoa = | [T S ara] U
1, la

1
~ _Ey(ta)TUAPdUTy(ta)' (36)
Thus, the second term on the right-hand side of Eq. (3.5) can be recovered by the first term. Then, for the
time interval from ¢, to ¢, which involves the quick change at z,,

I tq ta+At 1 tq I3
/ y’(t)TUPd(t)UTy(t)dt:/ +/ +/ ~/ +/ . (3.7)
1y to ty ta+At ty ta+At

Thus, a control force with P (¢) < 0 for most of the time but with P} () > 0 for limited periods can dissipate
energy from ¢, to 7. In fact, a hysteretic force by an elastoplastic constitutive law satisfies this condition, so
that it can dissipate energy.

We can anticipate another effect by deformation FB, i.e., a dissonant effect. As shown by Eq. (3.2), the
deformation FB has influence as if it can change the structural natural period. Such influences are estimated
in Section 3.5, assuming constant gains.

3.4. Excitation feedback laws

Let us assume that Ug(¢) is proportional to MV, that is, to deny the excitation by a control force:
Ug(1) = P()MV, (3-8)

where P.(1) € R™".

Then, the vibration energy is constantly decreasing. The effect of a control force with a constant gain is
expressed by a participation factor change, as in Section 3.5. Using a pseudo inverse U™, Eq. (3.8) can be
expressed as:

g(t)=U P()MV. (3.9)
For example:
1 0 0 1 00
Uu=|-1 1 0f, U =(11 0]. (3.10)
0 -1 1 111

And then, if
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mq m

s B my + my
P()MV =p.()s "~ ¢, g(t) = U P(t)MV = pe(t)

my, > m

1

Thus, if we uniformly provide action-reaction control systems for the reaction to excitation’s acceleration
at each story of a building, the control force at the bottom story should correspond to the total mass of the
building.

Furthermore, if more information for the excitation is provided, we can find other ways, as described in
Section 5.

3.5. Constant-gain feedback laws

If all the gains are independent of time, that is, G4(¢) = G4, G (¢) = G, and g(¢) = g, we can understand
the control force influence as changes of natural frequencies, damping and participation factors, i.e.,
Aw;, Ah; and Af;, respectively. Thus, the deformation FB control force could bring out a dissonant ef-
fect, the velocity FB control force dissipates energy, and the excitation FB denies the load due to an ex-
citation.

If Aw; is small and the mode vectors have only small changes, these changes are approximated as:

Aoy = o] M7 UGup,/20;, A= o] M7'UG@,/20;, AP, = @] Ug. (3.11)

Compared to the ith natural circular frequency w;, damping factor /; and participation factor f; of the
original model, those of the controlled model w;, 4} and f5; become

w,* = w; + Awy, h,* = h; + Ah;, ﬂr = B; + AB.. (3-12)

When the velocity response spectrum of a seismic excitation at w} with 4} is given by Sy(w}, h}), the
approximated maximum responses of the ith mode y”, y/ and y; are estimated by:

W= Bt Sl B), = BSe L), v = BiSy(wl k) . (3.13)

[ 270 [

Thus, using the least squares method, the maximum responses at the rth DOF of the model, y”, y. and y, are
approximated by:

1

1

1

12 1/2 12
W= lZ(wiry{/*)Z] . A= [Z(%J!")Z] S [Z(wiryf)zl : (3.14)

where ¢, is the rth component of the ith mode.
While, the maximum value of the jth control force is approximated by:

12
S {(Guonl) + (Gao ) + <g,-wmax>21 ’

where G,;, Gq4; and g; are the gains for jth control force, i.e., Gy = [..Gy;..], G4 = [..Gy;..] and g = [..g;..], and
Wmax 18 the maximum of w(z).
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This estimate is useful for determining the scales of control systems even if it follows nonlinear control
laws.

4. Optimal linear control
4.1. Least quadratic regulator (LOQRE) considering excitation influence

On condition that Eq. (2.5) holds, and x(#) and {w(¢)|¢ € [t, #]} are given, let us consider a cost function
as:

J=x(t))"Pix(1)) + / ' (x(t)"Px(¢) + u(t)" Qu(r)) dr. (4.1)

0

That is, J is a weighted quadratic norm of structural velocities and displacements and the control force. As
a special case, x(7)TPx(f) can represent vibration energy at ¢, by assuming:

P—%H;I 10(} (4.2)

As shown in Appendix A, the optimal control force, called the LQRE, is expressed as the sum of the FB
and FF terms:

u(t) = —Q ' BY(S(1)x(1) + (1)), (4.3)
where S(¢) and f(¢) are given by:

S'(t)+S" ()4 +A"S(t) — S"(1)BQ 'B'S(t) + P =0, (4.4)

f(t)+ (4" — ST (t)BQ 'B")f(t) + S(t)Dw(¢) = 0, (4.5)

S(t) =Py, f(t)=0. (4.6)
S(t) can be obtained as:

S(1) = (021(2) + 0 (0)P1) (011 () + 002 ())Py) ", (4.7)
where

0u(t) 0n(t)| _ B A -BQ'B'
|:021 (I) 022(1) = &Xp (t tl) —-P —AT '
We have the integrated form for Eq. (4.5) on the condition expressed by Eq. (4.6):

50 = exp(=¥(0) [ exp(Y@)S@Dw(r)de = [ exp(=¥() + V() S(@)Dw(r) o
= /t ' {exp ( - /t T(AT — S(2)BQ'B") di) }S(T)Dw(r) dr, (4.8)

where
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Y()=A"-S()BQ 'B", Y(1)=0, ie, Y(t)= /tl (A" — S(z)BQ 'B")dr. (4.9)

Eq. (4.8) shows that the FF term is the convolution with the future excitation information. However, the
LQRE is impractical because it requires future excitation information in advance.

Assuming a sampling time A¢, the LQRE for the discrete time system is introduced as well. On condition
that Eq. (2.9) holds, let us consider a cost function as:

k+L

J = Z (r+ 1) Px(r+ 1) + u(r)" Qu(r)]. (4.10)

As introduced by Fukazawa and Kawahara (1988), the optimal control force is expressed by the sum of
the FB and FF terms:

u(r) = —(B'S(r)B+ Q") B (S(r)Ax(r) + f(r)), (4.11)
where
Sr)=P+A"S(r+1)A—A"S(r+ 1)B(B"S(r+ 1)B+ Q) 'B'S(r + 1)4, (4.12)
= S T v fsmway
= S(r)Dw(r) + Y()Sr+ )Dw(r +1) +-- -+ Y(r)Y(r+) --- Y(k + L)S(k + L)Dw(k + L),

(4.13)

Y(r)=A" —A"S(r+ 1)B(B"S(r+ 1)B+ Q) 'B", (4.14)

S(k+L)=P. (4.15)

The FF term consists of the instantaneous counter-reaction to the excitation at step r and the convo-
lution with the future excitation information. From Egs. (4.12)—(4.14), the following relation, which cor-
responds to Eq. (4.5), is introduced:

f(r) = 8r)Dw(r) +[A" — A"S(r+ 1)B(B'S(r + 1)B+ Q) 'B")f (r + 1). (4.16)

4.2. Least quadratic regulator (LQR) for free vibration and a white noise excitation

Assuming that the excitation is a white noise, let us consider a cost function J,, which is an expectation of
J assumed by Eq. (4.1), as:

Jo = E[x(tl)TPlx(tl) + /l1 (x(0)"Px(t) + u(t)" Qu(r))dt |, (4.17)

where E[ ] indicates the expectation.
Then, as is well known, the optimal control force is provided by

u(t) = —Q 'B'S(1)x(1). (4.18)
where S(¢) is defined by Eq. (4.4).
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For a discrete time system, assuming J, as:

N

E|Y (x(r+1)"Px(r+1) + u(r) Qu(r)) |, (4.19)

=
and the control force is expressed by:

u(r) = —(Q+ B'S(r)B) 'B'S(r)Ax(r), (4.20)

where S(r) is defined by Eq. (4.12).

Hence, the induced control forces do not require the excitation information as a result. That is, they are
the same as the optimal control forces introduced for free vibrations. In other words, the control forces
provided by Egs. (4.18) and (4.20) neglect excitation influence, so that the control effects become damping
to reduce free vibrations. Therefore, we cannot consider excitation influence on assumption that a seismic
excitation is of a white noise.

4.3. Least quadratic regulator (LORS) for short term

Next, let us consider the case of short term optimization, assuming that Az is small, #, = 0, #;, = At and
wo = w(fy) in Eq. (4.1). At that time, the cost function is given by:

At
= x(At)"Px(At) + / (x(6)"Px(t) + u(t)" Qu(t)) dz. (4.21)
0
Then, we have the following approximation:

ex — At 4 _BQ_IBT | IT—AtA+ - Al‘BQ_lBTJ,-
P —-P —AT - AtP + - - T+ AtAT ... |’

S ~ (AP + (I + AtA")P,)(I — AtA + AtBQ'B'P,) ™"
= (P, + At(P+ A"P))(I + At(—A4 + BQ'B"P,)) ",

Yo = /OT(AT — S(2)BO'B")d) = /OI(AT — (8o + 4S8y +---)BQ'B")d2

2 2
:‘C(ATisoBQilBT) 7%SBBQ713T+,.. :‘L’YE) 7%S63Q713T+'~~,

At A
/ exp(—tYy)dr = Ad — T Y, —
0 (4.22)
A ) AR AP,
/0 rexp(—rYO)dr:jI ?Y

Eq. (4.8) becomes:
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At T
£(0) = / {exp ( - / (A" — S(1)BO'B") d/l) }S(I)Dw(r) dr
0 0
At
~ / exp (—tY},)(So + tSp) D(wy + twy) de
0
At
R~ / exp (—tY){SoDwy + t(S;Dwy + SoDwj) } dt
0

At At
= </ exp(—1Yy) dr) SoDwy + (/ texp(— tYy) dr) (SoDwo + SoDwy)
0 0

A Ar?
Atle{)Jr«--)SoDwo + <I+"')(S6DWO + SoDwp)

2
Atz T —1 pT ! Atz /
~ AtSoDwy — 7 (A — S()BQ B )S() — SO}DWO + TS()DWO
AP AP ,
= AtSyDw, + B (Sg4 + P)Dw, + TS()DWO. (4.23)
Hence, let:
u(t) = —Q ' B {Sox(t) + £ (1)}, (4.24)
AP ¢ AP ,
f(t) = AtSoDw(1) + - (So4 + P)Dw(t) + 7SODw (¥). (4.25)

Thus, the control force comprises a FB term and a FF term. However, for the precise A¢, the FF term
involves only an instantaneous counter-reaction term. The combination of the excitation and the structural
dynamics, which is expressed by —(A#*/2)Q ' B"S} ADw(t), has little influence on the control force with
precise Ar2. With the same order, the term for acceleration rate contributes to the control force. However,
because (At?/2)SoDw (t) ~ (At/2)SoD(w(t + At) — w(t)), some influence of the acceleration at the next step
can be considered.

Therefore, the LQRS induces mainly an instantaneous counter-reaction term in addition to the FB term,
but little convolution influence caused by future excitation information.

4.4. Least input energy control

On condition that Eq. (2.3) holds, and x(#) and {w(¢)|t € [ty, #;]} are given, let us consider a cost function
as:

J= / " (x(0)"PDW(O) + u(t) Ou(r)) d. (4.26)
For example, if
P W g}, (4.27)

then x(t)TPDw(t) indicates input energy to a structure by an excitation. Thus, let us call the control strategy
minimizing Eq. (4.26) the least input energy control (LIE).
As shown in Appendix B, the optimal control force is expressed by:

u(t) = =307 B'f (1), (4.28)
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where

f(t) =0, f(t)=—-PDw(t)— A"f (). (4.29)
Or,

£) = / " E(t— 1) PDw(r) dr, (4.30)

where Z(¢) = exp(tA4) is defined by Eq. (2.6).

The control force comprises only the convolution term of the excitation. Furthermore, Egs. (4.29) and
(4.30) resemble Egs. (4.5) and (4.8), respectively, so that similar effects to those induced by those equations
are anticipated. In other words, we understand that each term of the control forces by LQRE works to
dissipate vibration energy and reduce input energy.

For a discrete time system assuming that Eq. (2.4) holds, let us consider a cost function as:

k+L

J =Y (x(r) PDw(r+1) + u(r)" Qu(r)). (4.31)

r=k

Then, the optimal control force is expressed by:

u(r) = 10" B'f (r), (4.32)
where

. kN R R o . .

F(r) =Y (A" PDw(p) = PDw(r) + A"PDw(r + 1) + - - + (4")"" ' PDw(k + L). (4.33)

p=r

Therefore, the LIE induces only a term corresponding to future excitation information.

As in the foregoing, the LQRE, which aims at reducing vibration energy, induces the FB term and the
convolution term with future excitation information. This convolution term cannot be induced by the
LQR, i.e., on assumption that a seismic excitation is of a white noise. The LQRS induces an instantaneous
counter-reaction term as well as a FB term, but only a small term corresponding to future excitation in-
formation, while the LIE induces only the convolution term with future excitation information. That is, to
incorporate excitation influence into a control strategy, we must acknowledge future excitation information
or something to substitute for it. Thus, Section 5 examines control strategies, assuming dynamic charac-
teristics of a seismic excitation by a state equation model.

5. Control strategy for excitation model
5.1. Excitation model

Let us assume that excitation information is modeled as a g-dimensional state equation model:
v(¢) = Hv(t) + L{(2), (5.1)

w(t) = Fv(r) + (o), (5.2)

where v(¢) € RY, H € R”, F € R? and {(¢) € R; the real parts of the eigenvalues of H should be less than 0;
and ((7) represents an error.

Or, assuming sampling time A¢, let excitation information be modeled by a discrete g-dimensional state
equation model:
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v(r+1) = Hv(r) + L{(r), (5.3)

w(r) = F'o(r) + {(r), (5.4)

where v(r) € RY, H ¢ R7*9, F € R? and {(r) € R; the absolute values of eigenvalues of H should be less
than 1.0; and {(r) represents an error.
To obtain coefficients for the model, see Yamada (1999b).

5.2. Extended state feedback control

Using the foregoing excitation model, we can develop an extended FB control law for a structural model
expressed by Eq. (2.5). That is, let us assume:

u(t) = Gx(t) + Yv(2),

where G € R™" and Y € R™ indicate FB gains.
Then, the structural dynamics is expressed by:

X' (t) = (A + BG)x(t) + (DF" + BY)v(t) + D((1). (5.5)
Using a Laplace transform:

s¥(s) — xo = (A + BG)x(s) + (DF" + BY)¥(s) + DL(s), (5.6)

sv(s) — vo = H(s) + {(s), (5.7

where %(s), #(s) and {(s) indicate the Laplace transform of x(s), »(s) and {(s), respectively.
Hence:

%(s) = {sI — (A + BG)} 'xo + {sI — (A + BG)} '(DF" + BY)(sI — H) v
+ {sI — (4 + BG)} '{(DF" + BY)(sI — H)"'L + D}{(s). (5.8)

The first term in the right-hand side indicates the response to the initial state, the second term represents the
convolution with excitation information, and the last term represents the influence of the error.

Letting I1 = diag{m;} = ®" (4 + BG)®, @' ® =1, ® = {..¢,..}, A = diag{/,} = V' HY, ¥ = {.4,..},
Y'Yy — [, Eq. (5.8) is decomposed to:

D x(s) = (sl — ) ' ® xy+ (sI — 1) '@ (DFT + BY)¥(sI — A) "W vy + (sI — )"
x {®T(DF" + BY)¥(sI — A) '"¥'L + ®"D}{(s). (5.9)

Let us define the participation factors f, the response sources y; (¢) of the ith state mode to the kth ex-
citation mode, and its Laplace transform j,, (s) as:

By = ¢ (DFT + BY)y,,
Tuls) = (s=m) s =) = {ls=m) " = (s =)} /(- ), (5.10)
1) = -exp(o) - exp(an)) /(0 ),
Then:
¥(0) = 673(0) = xpexp (@0) + 3 Fuu 0% + L0 (5.11)



6100 K. Yamada, T. Kobori | International Journal of Solids and Structures 38 (2001) 60796121

where ¢! xo = x;,, ¥, vy = vj,, and {i(¢) is an error to the ith mode.

If the real part of w; is negative and small enough, the responses are rapidly reduced. When f; is small,
the influence of the response source becomes small. The case where each component of (DF' + BY) is
small, i.e., a control force works to deny an excitation source, is one such case. Furthermore, a response
source is small when @; is far from 4;. The structural responses then become small. This case is called
dissonance.

We can view the foregoing results in the time domain as well. Let us express the structural dynamics and
the excitation model in an augmented space as:

o e A L S H O s
When the extended FB control law is assumed, we have
{Jvcg))}: [A +OBG DFT;BYH)vcg))}JF {ﬂg(z). (5.13)

Then, the solution is given by:

{fég } = exp(t;l){ :Eg; } + exp (1) * {IL)}CU), (5.14)
where * indicates convolution and:

exp(td) — | XA+ BG)) Zf (jﬁé(A + BG)"'"(DF" + BY) Hr)

0 exp (tH)

Thus, as considered in the frequency domain, if the real parts of the eigenvalues of (4 + BG) are negative
and small enough, the responses are quickly reduced. If the components of (DF' + BY) are small, or if the
eigenvalues of (4 + BG) are far from those of H, the responses have less excitation influence. In other
words, we have three strategies: (i) to dampen the responses to the initial conditions at each moment, (ii) to
activate a control force neglecting the excitation to a structure, and (iii) to isolate the structural natural
frequency from the frequency of the excitation sources.

5.3. Extended least quadratic regulator (ELQR)

We can extend the LQR for the excitation information expressed by a state equation. Let us call it the
ELQR. Firstly, as expressed by Eq. (5.12), let the structural and excitation dynamics be expressed by a state
equation in an augmented space:

7 (t) = Az(t) + Bu(?) + D (), (5.15)
where
(i) alew) e[ e[t

ie., 7(t) € R¥", A € R¥H0x+0) B ¢ RE*m and D € R¥,



K. Yamada, T. Kobori | International Journal of Solids and Structures 38 (2001) 6079-6121

Next, assume a cost function as:

J.=E [x(tl)TPlx(tl) + / ' (x(t)"Px(t) + u(t)TQu(t))dt}

fo

= E[z(h)Ti)lz(h) + /tl (z(t)Ti’z(t) + u(t)TQu(t))dt} ,

tp
where

p—|P 0 5 | P10
r= {0 0}’ Pr= {0 0}
ie., Pand P, € RZ+a)x(2nta),
Then, the optimal control force minimizing the cost function is expressed by:

u(t) = —Q 'B"S(1)z(t) = —Q'B" (Sux(1) + Suv(1)),

where
- S' S' -
S(t) = |21 JZ]’ S € RZna)x(2n+q)
) |:S21 S»
is given by:

S'(1)+ 8" ()4 +A"S(1) — S (1)BQ'B'S(1) + P =0,

6101

(5.16)

(5.17)

(5.18)

(5.19)

In fact, Sy, (¢) = S(¢), so that the ELQR comprises the FF term —Q ' B"S,»(¢) in addition to the FB term

by the LQR.

We can introduce the ELQR for the discrete time system (Yamada and Kobori, 1996). That is, let us

express a state equation in an augmented space as:
2(r + 1) = Az(r) + Bu(r) + D(r),

where

[~>14
Il
S W
e
Il
~ §>

Let the cost function be:

J.=E

D (x(r+ D) Px(r+1) + u(r)TQu(r))]

r=k

=E 3 (z(r+ 1) Pz(r+1) +u(r)TQu(r))],
where
9 P 0
[0

Then, the control force is expressed by:
u(r) = —(Q+ B"S(r)B)"' B"S(r) Az(r),
where S(¢) is defined by:

(5.20)

(5.21)

(5.22)
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Sr)=P+A"S(r+1)A—A"S(r+1)B(B"S(r+ 1)B+ Q) 'B'S(r + 1)A. (5.23)
In fact, Eq. (5.22) can be decomposed to:

u(r) = —(@+ B"S1(r)B) "' B" (811 (r)Ax(r) + 811 (r) DF v(r) + S (r) Hv(r)), (5.24)
where

& ANTEEN
$— |2n 12]
|:SZI S

Thus, we can write Eq. (5.24) as:

u(r) = G*Bx(r) + G*v(r) + G™v(r) = u™(r) + ' (r) + u"F (), (5.25)
where
G™ = —(Q+B"Si(r)B)” jz St (r):,A u™® (k) = G™x(k),
G = ~(Q+ B'S1(1B) B8\ (DFT. (k) = G¥(b),
G = (0 + B0 (B B Su(H.,  uF(k) = G v(k),

It should be noted that Sy, (r) = S(r), i.e., equal to the solution of the Ricatti equation for the LQR.
Thus, the first term works as damping transient responses. Because F'v(k) ~ w(k), the second term works
to deny excitation. The third term corresponds to excitation dynamics, which prepares for future excitation
influence. Thus, the three terms in Eq. (5.25) are called the FB, instantaneous counter action and FF terms,
respectively.

6. Optimal control under constraints
This section describes optimal control strategies induced under more restricted conditions. First, control
force amplitude is explicitly restrained. Second, a higher-order norm for the control forces is considered.

Next, the optimization for variable elements is taken account of. Furthermore, control for the VDEs with
ASEs is examined.

6.1. Optimization for restrained control force amplitude

Assuming structural dynamics for ¢ € [f, 7] expressed by Eq. (2.5), with an initial condition:

X(to) = Xop. (61)
Let us obtain the optimal control force that minimizes the cost function J:
n
J=Filx(w).n) + [ Flx(0,u(0).0)d (62)
Iy
under the constraint
|u; ()] <v, (6.3)

where u(t) = {u;(¢)} and ¢, is fixed.
Based on the optimization theory, Hamiltonian is defined as:
H = F(x(t),u(t), 1) + A1) (Ax(¢) + Bu(t) + Dw(¢)), (6.4)
where A(t) € R”.
The boundary condition for A(¢) is given by:

At)) = OF (x(t,), 1,) /ox. (6.5)
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Then, let us obtain the optimal control forces for the following two cases:

Case A
Assuming F(x(t),u(t),t) = Fi(x(t)),
OH /ou = B A(1). (6.6)
Thus, Hy, is given by:
(i) wy=v for BjA(r) < 0; (i) u; = —v for BIA(t) > 0; ie., u; = —vsgn(B}A(r)). (6.7)
Then, the Euler equations are:
x'(t) = Ax(t) + B{.. — vsgn(BJTl(t))..}T + Dw(t), (6.8)
X (t) = —0H Jox = —0F,(x(t))/ox — ATA(¢). (6.9)

The optimal solution x(¢) is provided by solving Eqs. (6.8) and (6.9) under two-point boundary conditions
given by Egs. (6.1) and (6.5) and excitation influence, which is in fact difficult because a sign function is
included. Furthermore, the control force expressed by a sign function produces residual vibrations, as
shown in Section 8.

Case B
Lgtseus assume that F(x(¢),u(t), 1) = Fg(x(1)) 4+ (1/2)u(r)" Qu(r) and Q = diag{g,}. Then,
OH /ou = Qu(t) + B A(t). (6.10)

Letting B = {B/T}, Hoin 1s given by:

(i) u; = v for ¢; ' B} A(r) < —v;
(i) u; = —qj?lBjT/l(t) for |qJTIBJT/l(Z)| <
(iil) u; = —v for q.]."B]T/l(t) >0,

which are written as:

u; = —usat(q;lBjTll(t)/v). (6.11)

The bound for region (ii) is provided by |g; IB/TA(Z)\ = v. To obtain A(¢), we must solve the following Euler
equations under two-point boundary conditions.

X/(t) = Ax(t) + B{.. — vsat(q; ' Bl (1) /v)..}" + Dw(t), (6.12)

X (t) = —0F(x(t))/ox — ATA(2). (6.13)

For the case F3(x(t)) = (1/2)x(r)" Px(z), the LQRE provides the optimal control force if all control forces
are in region (ii). To consider excitation influence, we may assume a state equation model for excitation
information as shown in Section 5. However, if one or more control force reaches its limit, it is difficult to
analytically solve Egs. (6.12) and (6.13) under two-point boundary conditions.

If we substitute tanh( ) for sat( ), the control force is expressed by:

u;(t) = —v tanh (0g;' B} (1) /v), (6.14)

where 0 adjusts the smoothness.
Then,

u(t) = —0q; ' B} i (1) sech(0g; ' B} A(1) /v) = qulBjTl’(t){l — (1u,(t))2}. (6.15)

v
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Compared to the LQRE control force given by differentiating Eq. (A.4), the term 0{1 — ((1/ v)u(,—(t))z}
restrains the control force rate, i.e., increment per unit time. Thus, adding this nonlinear term to the linear
control law expressed by a differential equation, i.e., an indirect law, could restrain the control force am-
plitude.

6.2. Optimization for higher-order norms

A nonlinear control law restraining control force amplitude can be also induced for a cost function
involving higher-order norms. For example, for the structural dynamics defined by Eq. (2.5), let us assume
the cost function defined by:

7= 3l + [ S0l + S+ a1 o (6.16)

fo

where P, € R, P ¢ R*™?, Q € R™", R € R™"; and || ||}, denotes rth-order norm weighted by W.
Then, assuming A(f) € R*, Hamiltonian is given by:

1 1 1
H = S (@) + 5 ()l + 5 l(0) [ + 27 {Ax(e) + Bu(z) + Dw(n)} (6.17)
Thus, the optimal values should satisfy:
—J(t) = 0H /ox = Px(1) + A"A(¢), (6.18)
0 = 0H/0u = Qu(t) + Ru’(¢) + BT (1), (6.19)
l(l‘]) = P1x<tl), (620)

where #*(t) = {u;(1)*}.
Differentiating Eq. (6.19) provides an indirect control law as:

W (t) = —(Q + 3Rdiag{u;(1)*}) "B X (1), (6.21)

where diag{u;(1)’} € R™" denotes a diagonal matrix whose components are square of each control force
component.

Comparing the above to Eq. (6.15), (Q + 3Rdiag{u,;(r)*})"" restrains control force amplitude. However,
A(t) should be nonlinear because Eq. (6.19) is nonlinear. If A(¢) is expressed by:

Aty =S@)x(t) + £(@t), (6.22)
with the end condition as:

&(n) =0, (6.23)
we have:

X(t) = S'(t)x(t) + S(1){Ax(¢) + Bu(t) + Dw(t)} + £ (1). (6.24)

While, Eq. (6.19) can be expressed as:
u(t) = —(Q + Rdiag{u;(t)’}) ' B"A(t)
= {0+ Q" 'R(I + diag{u,(1)’} Q"' R) ' diag{u;(t)’} Q" } BT A(¢). (6.25)
Based on Egs. (2.5), (6.18), (6.22), (6.24) and (6.25), we have:
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(S/(0) + P+ S(04 + AS(1) — S()BO B'S()}x(1) + S()Dw(r) + £ (1)

—(A" — S(1)BQ'B")&(r) — S(t)BQ ' R(I + diag{u,(1)’}Q ' R)~" diag{u;(r)’} Q' B"(S(t)x(1) + &(t)).
(6.26)

Thus, when S(¢) and its end condition are given by Egs. (4.4) and (4.6), respectively, &(¢) represents higher-
order and excitation-dependent terms of A(z).

6.3. Optimization for variable element

Next, let us assume a structure with variable elements. The structural dynamics are expressed by:

X' (1) = Ax(t) + (Zg,(t) U,-Uf) x(t) + Dw(t). (6.27)

where U; € R™ indicates the locations where a variable element is placed. For the VSE, 1 or —1 are as-
signed in the lower half components of U;. For the VDE, 1 or —1 are assigned in the upper half components

of U,.
Let us obtain the optimal control forces that minimize the cost function J:

J=F(x(t),4)+ /f1 F(x(t),g(t),t)de. (6.28)
Assuming A(f) € R*, the Hamiltonian is defined as:

H = F(x(1), 8(1), 1) + 4(1) { (Zg; nU; UT) )+DW(f)}~ (6.29)
Then, for the optimal values,

OH ox = OF (x(t),g;(t),1)/0x + AT A(¢) (Zg] HU; UT> 1) ==X, (6.30)

OH /dg; = OF (x(t), g(t),1)/0g; + () U, U} x(1) = 0. (6.31)
For F(x(1)) = k(1) Px() + ($,4¢(1)08,(1)) and Fi(x(1)) = $x())" Prx(0),

g() =-0;"4(t)" U, U x(1), (6.32)

x'(t) = Ax(t) + (Z — 0" U UTx(1) U_,-Uj) x(t) + Dw(t), (6.33)

X(t) = —Px(t) — ATA(t) <Z 0;'(t) U U x(1) U,-Uj) At). (6.34)

The initial condition for x(#) and the end conditions for A(#) are given by:
x(ty) = xo, A(t) = 0F (x(t)),4)/0x = Pyx(1y). (6.35)

To obtain the optimal solution, we must solve the above nonlinear differential equations under two-point
boundary conditions.
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When neglecting the excitation influence and using the approximation given by A(¢) ~ S(¢)x(¢), we have:

g(t) = =0;'x(t)' ST (U, U x(0). (6.36)
And, S(¢) is given by:

S'(t)+S()A+A"S(kt)+P =0, (6.37)

S(1) = Py. (6.38)

To consider excitation influence, we may assume a state equation model for excitation information.
6.4. Optimization for variable damping element with auxiliary stiffness element

As reviewed in Section 2.6, damping elements are often installed in a structure via ASEs. Thus, VDEs
accompanying ASEs compose NMW elements. Let us introduce a control law for such VDEs, assuming a
structure equipped with m pairs of them. Let one pair of ASE stiffness and VDE damping coefficients be g;
and n,(t), respectively. Then, the dynamics for a structure with these VDEs and ASEs are expressed by:

My"(t) + CyY' (t) + Ky(¢) + Un(t) = —MVw(t), (6.39)

W(t) = GU Y (t) — EL(t)u(t) + e(t) o u(t), (6.40)

where U indicates the DOFs where the controlled force acts, u(f) represents controlled forces in the NMW
clements, G = diag{g;}, Ev = diag{e;}, e(t) = {¢;(1)}, n;(1) = g;/(er; — ¢;(¢)), and e(r) o u(7) = {e;u;}.0r,
we can write:

x'(t) = Ax(t) + Bu(t) + Dw(t), (6.41)

u(t) = GI"x(t) — Evu(t) + e(t) o u(t), (6.42)

where J = [UT 0.

Because the controlled force is not explicitly defined by the function of the state values, but its dynamics
are defined by a differential equation, the control for the VDE with the ASE is one of indirect control
methods.

Then, let us obtain the optimal controlled force that minimizes the cost function J:

J=x(t) Pix(t) + /tl %(x(t)TPx(t) +u(t)" Qu(t) + e(t) Re(r)) dt. (6.43)

to

Assuming A(f) € R* and ¢(¢) € R", the Hamiltonian is defined as:
H =Yx(t)" Px(¢) + u(t)" Qu(t) + e(t)" Re(t)) + A(t)" (Ax(t) + Bu(t) + Dw(t)) + (1) (GI " x(z)

— Eru(t) +e(t) ou(t)). (6.44)
Then, the optimal values satisfy:
—J(t) = 0H /ox = Px(t) + A" A(t) + JGo(t), (6.45)
— /(1) = OH [ou = Qu(t) + BT A(t) — Evo(t) + (1) 0 9(1), (6.46)
0 = 0H/0e = Re(t) + u(t) o ¢(2). (6.47)

Hence,
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e(t) = =R "u(?) 0 (1), (6.48)
@' (1) = —Qu(t) — BYA(t) + ELo(1) + R 'u(t) 0 9(1) 0 9(1), (6.49)
W (1) = GJ x(t) — ELu(t) — R "u(t) o u(t) o ¢(2). (6.50)

The initial condition for x(¢) and the end conditions for A(#) and ¢(¢#) are given by:
x(t) = xo, A(t) = Px(t1), o(tn) =0, (6.51)

Solving Egs. (6.41), (6.42), (6.49) and (6.50) under two-point boundary conditions provides the optimal
control law.

To consider excitation influence, let us assume a state equation model for excitation provided by Egs.
(5.1) and (5.2). Then, we can write Egs. (6.41), (6.42), (6.49) and (6.50) as:

£/(6) = Ax(t) + D(F () + (1) — Bu(t) o u(t) o (1)), (6:52)
W (1) = —Py(t) — A u(t) + Blu(t) o 9(1) 0 (), (6.53)
where
w-(i) -l AL e-[oal »-[2) a-[o]
ie., 2(¢), u(t) and D € R*™; 4 and P € R2m>@nm). B ¢ gntmpan,
Let us assume:
u(t) = S(O)x() + Y()w(e) + &), (6.54)

where E(l) c [R(2n+m)><(2n+m), 7([) c R(2n+m)><q and E(t) c R2n+m.
Then, we have:

(S +8SOA+A4 8(t) +Pyy(t) + {¥(t) + SODF" + 4 Y(1) + Y()H}v(¢)
—S(0)B(u() o u(r) o ¢(1)) — Bu(t) o u(t) 0 9(1)) + (S()D + Y ())L){ (1) + & (1) + 4" &(t) = 0.

(6.55)
Let 8(t) and ¥(¢) follow:
St)+8(tA+A4 St)+P =0, (6.56)
Y (1) +S()DF" + 4 Y(t) + Y({)H =0, (6.57)
S(t) =P, Y(t)=0. (6.58)

Then, S(1)x(t) + Y (t)v(¢) provides the first-order approximation of u(¢), and &(¢) owes higher-order terms.
Or, more simply, if we neglect excitation influence and assume ¢(¢) ~ Su(t), S € R™", we have:

(1) = GI"x(t) — Evu(t) — R™'Su(t) o u(t) o u(?), (6.59)
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e(t) = —R'Su(t) o u(t). (6.60)

Then, e(¢) should be decreased for large-amplitude control forces for S > 0.

7. Stability conditions for nonlinear control

This section reviews sufficient conditions for stability for direct control and indirect control. That is,
direct control explicitly expresses a control force by state values, while indirect control defines control force
dynamics by a differential equation.

7.1. Direct nonlinear control for free vibration

First, let us neglect an excitation, and then a dynamics of a model is given by:
X' (t) = Ax(¢) + Bu(?). (7.1)

where A is a Hurwitz matrix, i.e., real parts of all eigenvalues of 4 are negative. Then, A" P + PA < 0 for
P> 0.
As direct nonlinear control, let us assume control forces expressed by:

u(t) = —0(Gx(1)). (7.2)

Condition A (Popov criterion). Assume control forces satisfying

O(Gx(1))'[0(Gx(1)) — QGx(1)] <0, (7.3)
where

0 = diag{..q,..}. (7.4)
That is, for the jth column of © (y(t)) with y(t) = Gx(t),

0,(¥(1)"[0;(r(1)) — q;p(1)] <O0. (7.5)

Then, a system is stable if there exists P > 0 and y > 0, such that:

A"P+PA=—L"L—¢P,
PB—yA"G'Q=G"Q0-L"W, (7.6)
7(OGB+ B'G'Q) = W'W —2I.

Proof. Assume a Lyapunov function candidate defined by:
Gx(t)
V= x(6)Px(t) + 2 / 0(c)" Qdo. (7.7)
0

where P=P" >0and Q= Q" > 0.
Then,
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X' (0) Px(1) + x(0)" Px' (1) + 2y0(Gx(1))" QGx (1)

= x(1)"[A"P + PA]x(¢) — 2x(¢)' PBO(Gx(t)) + 2yO(Gx(1)) OG[Ax(t) — BO(Gx(1))]
= x(1)"[A"P + PA]x(¢) — 2x(¢)' [PB — yA" G" Q|O(Gx (1)) — 2yO(Gx(1)) OGBO(Gx (1))
= —x()T[LTL + eP)x(¢) — 2x(1)"[GTQ — L"W]O(Gx(1)) — O(Gx())" [WTW — 2110(Gx(¢))

= —ex(1)' x(t) — [Lx(1) = WO(Gx(1))]" [Lx(r) — WO(Gx(1))] — O(Gx(1))' [O(Gx(1)) — QG (x)]
< 0. (7.8)
Since (i) ¥ = 0 only if x(¢) = 0 and (ii)) ¥ > 0 and 7’ < 0 unless x(¢) = 0, the system becomes stable.

This condition is equivalent to the existence of the positive real z(s) defined by:

2s) =1+ (1+7s)QG(sI — A)"'B. O (7.9)

Example A: A control system is stable if the jth control force given by:
u;(t) = —q;sat(x (1) — x(2)), (7.10)

where sat(x(¢)) = 1 for |x(¢)| = | and sat(x(¢)) = x(¢) for |x(¢)| < 1, and k and / are the DOFs where the jth
control force act.

Condition B (Circle Criterion). Assume that control forces are given by:

0(Gx(1)"[0(Gx(1)) — 0Gx(1)] <0, (7.11)
where Q > 0.
Then, a system is stable if there exists P > 0 such that:

A"P+PA=—-L"L—¢P, PB=G'Q—V2L" fore>0. (7.12)

Proof. Assuming a Lyapunov function candidate defined by:

V = x(1)" Px(1), (7.13)

= /(1) Px(1) + x(1)" Px(1)
— [Ax(t) — BO(Gx(1))]" Px(1) + x(1)" P[Ax(1) — BO(Gx(1))]
x(1)"(A"P + PA)x(t) — 2x(t)" PBO(Gx(1))

7.14
—x(O)"(L"L + ¢P)x(¢) — 2x(1)" (GTQ — V2L")O(Gx(1)) 714
= —ex(1)' Px(t) - [ x(1) = V20(Gx(1))]'[Lx(1) — V20(Gx(1))] + 20(Gx(1)) ' [O(Gx(1))
- 0Gx(1)] <
Since (i) ¥ =0 only if x =0 and (ii)) ¥ > 0 and 7’ < 0 unless x = 0, the system becomes stable.
This condition is equivalent to the existence of positive real z(s) such that:
2s) =1+ QG(I—A)'B. O (7.15)

Example B: Suppose control forces given by:

u(t) = —Q "B sat(x(1)), (7.16)
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where sat(x(r)) = {..sat(x;(¢))..}" and @ = Q" > 0.Then, the system is stable since:

[0 B" sat(x(1))]"[@ ' B" sat(x(1)) — Q"' B"x(1)]
= sat(x(1))"BQ ' Q7' B [sat(x(¢)) — x(¢)] <0. (7.17)

7.2. Indirect nonlinear control for free vibration

Next, for the model defined by Eq. (7.1), let us assume a control force defined by the differential
equation:

U (t) = O(x(1),u(r)). (7.18)
Condition C (by Lefshetz). The system is stable if u/(¢t) is given by:

(A"P+PA) (PB+G'Q)

W(t) = O(Gx(t) — Eu(t)),E >0 and <0, forP=P" >0

(PB+G"Q)" —2QE
0=0">0. (7.19)
Proof. Let us first transform x(¢) and u(¢) to ¢(¢) and »(¢) by:
q(t) = Ax(t) + Bu(z), v(t) = Gx(t) — Eu(t), (7.20)
where
A B
‘ G —E’ 70 (7.21)

Then, we have:
4(t) = Ag(t) + BOW(), V() = Galt) — EO(v(1)). (7.22)
Next, let us assume the Lyapunov function candidate:
)

V =q(t) Pqg(r) +2 / ' O(s)' Ode. (7.23)

0
Then,
V' =q(1) Pq(t) + q(t) Pq (1) + 20 (v(1)) Qv (1)
=) (A"P + PA)q(t) + 29(t) " (PB + G" Q)0 (v(1)) — 20(v(1))' QEO (v(r)) < 0. (7.24)

Since (i) ¥ = 0 only for {x(¢),u(t)}" = 0 and (ii) ¥ > 0 and V" < 0 unless {x(¢),u(r)}" = 0, the system is
stable. O

However, it is too general to apply this condition to a practical case. Then, more specified conditions are
introduced as follows:

Condition D. In fact, we have an easier problem if all the state values where the control force act are fed back.
That is, a system is stable if:
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W(t) = O(Gx(t) — Eu(t)), G=-Q'B'P, P>0, Q>0 E>0, (7.25)
This is because Eq. (7.24) always holds. The design problem is only to find P, Q, E and the characteristics of

O(Gx(t) — Eu(t)).
Example D: As a simple case for Condition D, let us assume:

P=1 Q=diag{l/q;}, E =diag{e;}. (7.26)
That is, a system is stable when controlled by:
(1) = {=q;(x(6) = x, (1) — eu()}’,

where k and / indicates the DOFs where the jth control force act.
Condition E. The system is stable if:

u(t) = Gx(t) — O(u(t)), G=-Q0'B'P, u()"QO(u(r)) > 0. (7.27)

Proof. Let us define a Lyapunov function candidate with P = PT > 0 and Q = Q" > 0 as:
V = x(t)" Px(t) + u(t) Qu(z). (7.28)
Because (i) V' = 0 only when {x(¢),u(s})" =0, and (i) ¥ > 0 unless {x(¢),u(r)}" = 0, and (iii)

V' = x'(t)"Px(t) + x(¢) " Px'(t) + /' (¢)" Qu(t) + u(r)" Q' (¢)
= x(0)"(A"P + PA)x(t) + 2x(¢)" (PB + G" Q)u(t) — 2u(t)" QO (u(t)) < 0, (7.29)

the system is stable.

Example E: As the simplest case that satisfies Condition E, we have:

P=1, Q=diag{l/q;}, O(u(r)) = diag{e;}{.u;(1)"..}". (7.30)
That is,
(1) = —q;(ue(t) — x:(0)) — eju (1), (7.31)

where k and / indicate the DOFs where the jth control force act.

7.3. Direct control with excitation term
Next, let us consider the model under an excitation expressed by Eq. (2.5), and the control force given by
Eq. (7.2), where stability for free vibration is warranted by the foregoing conditions, i.e., we have & such
that:
x(1)"(ATP + PA)x(¢) 4 2u(t)" B"Px(t) < —&*(x(¢) Px(t) + u(t) "u(r)). (7.32)

Then,
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il

J = x(6) Px(t1) — x(t0) Px(to) = / (e Px(0)] i = / (0T Px () + x(6) P (1)) dt

0} t

< / ' [—e2x(t) " Px(1) — u(t) u(t) + 2w(t) D" Px(1)] dt

fo

- / ! [—(ex(t) — Dw (1)) P(ex(t) — Dw(1)) — u(r) u(t) + w(z)* D' PD]dt

fo

4l
<D"PD / w(r)dt. (7.33)
1

0

Thus, the structural response is bounded as far as the excitation is bounded.

7.4. Indirect control with excitation term

Next, the equivalent results are obtained for indirect control under an excitation as well. For example, let
us assume that the control force defined by Condition E as:

W(t)=—Q 'B"Px(t) — O(u(t)), (7.34)
and we have & such that:

x(1) (A"P + PA)x(t) < —&*x(1)" Px(1). (7.35)
Then,

J = x(t))"Px(ty) — x(t0)" Px(to) + u(t;)" Qu(t,) — u(ty)" Qu(ty) + 2 /t1 u(t)" QO (u(t))dt
- /,t1 [(x(0)" Px(t) + u(t)" Qu(r))' + 2u(t)" QO (u(1))| d
- / ! [x(t)" (A"P + PA)x(t) + 2w(t)D" Px(¢)] d¢

< / ' [—&2x(1)" Px(t) + 2w(t) D" Px(1)] dt

fo

_ / "= (ex(t) — Dw(0)TP(ex(t) — Dw(t)) + w(t)'D"PD]dt < DTPD / " (). (7.36)

Thus, providing an input excitation is bounded, the structural responses and the control force at ¢, and the
power of the control force are bounded.

7.5. Control strategy for excitation model

For the control strategies considering the state equation model of excitation information as introduced
in Section 5, let us examine their stability. B

As shown in Eq. (5.15), we can construct a state equation in augmented space. Because A4 is a block
diagonal matrix, it can be a Hurwitz matrix if both 4 and H are Hurwitz. Thus, by substituting z(z), {(7), 4,
B and D for x(¢), w(t), A, B and D in the foregoing conditions, respectively, the foregoing results are ef-
fective for the control strategies considering the state equation model of excitation information as they are.
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8. Examples of nonlinear control laws

Following with the stability conditions for direct and indirect control laws, this section introduces ex-
amples for direct and indirect nonlinear control laws. As the simplest control laws, nonlinear velocity FB
laws and NMW-type control force are introduced.

8.1. Nonlinear velocity feedback laws

Let us assume the nonlinear velocity FB laws, i.e., u(z,),y) = —G(y,)')y. That is, the control force
phases must follow the velocity, but the velocity gains nonlinearly depend on velocity and displacement.
For symmetry, the gains should be even functions of velocity and displacement. As shown in Fig. 5, the
following are examples of the nonlinear velocity FB laws.

VVD: Gain decreases when the velocity increases as G(y,)’) = aly/|”, —1 < a < 0. Let us assume a simple
case such that u(t,y,y) = —aly’|"*sgn(y/).

VST: The control force linearly changes at first, but later saturates at +u,. This is expressed by
u(t,y,y) = —min(ey’, upsgn(y')), e > 0. That is, gain is constant or zero.

VSW: The control force switches over from uy to —uy, or from —u, to uy without linearly changing the
range: u(t,),y) = —upsgn(y).

Assuming m = 1.0, o = 2n, h = 0.01, a = 1.0, e = 10 and uy, = 1.0, let us obtain responses to impulse
and a seismic excitation. Fig. 6 shows time histories of the response velocities and the control forces for
impulse assuming y; = 1.0. The case VSW shows the residual vibrations. In fact, the cases VVD and VSW
satisfy neither Condition A nor Condition B. Fig. 7 shows time histories of the response velocities and the
control forces for the seismic excitation, JIMA-KOBE, NS component of the Hyogoken—Nanbu earthquake

G Uy up

| v’ | v v’
(8 VVD (b) VST (© VSW

Fig. 5. Assumed nonlinear velocity FB laws.
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Fig. 6. Response velocities and control forces controlled by nonlinear velocity FB laws for impulse.
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| ; . . ) .

Fig. 7. Response velocities and control forces controlled by nonlinear velocity FD laws for KOBE.

in 1995 (KOBE), assuming that its maximum acceleration is 8.2. We can approximately estimate the control
effects by equivalent damping coefficients (Yamada, 1998).

8.2. Nonlinear-Maxwell-type control force

As one of the simplest indirect nonlinear control laws, let the control force be defined by:

W (t) = —GU"Y(t) — ELu(t) — Exu’(2), (8.1)
where (1) = {u,(¢)’, . .. ,uj(t)3, - u(0)’YT, ie., (1) indicates a vector whose components are the third
power of each control force. G € R™"™, Ep € R™" and Ex € R™" represent FB gains given by:

G =diag{g;}, E. =diag{ey}, Ex = diag{ex;}, (8.2)

where diag{ } composes a diagonal matrix of a vector { }. Thus, the control force dynamics depend on the
deformation rate between the DOFs and the amount of the control force at time 7.

In fact, the control law is provided by Eq. (7.31) and equivalent to the law induced by Eq. (6.59). Thus, it
is stable and an approximation of the optimal control when the excitation influence is neglected.

For an SDOF model whose structural dynamics is given by Eq. (2.3), let the control force satisfy:

(1) = —g/(t) - evult) — exu(t)’, (8.3)

And, assume m = 1.0, = 2n, h = 0.01, g = 4n%, e;. = 5 and ey = 50. Fig. 8 shows the control force vs.
displacement relations for KOBE, whose maximum is 1.0 and 8.2. As shown in the figure, the control force
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(a)for w,,=1.0 (b)for w,,=8.2

Fig. 8. u—y relations controlled by NMW-type control force for KOBE.

vs. displacement relations plots elliptical curves for a small excitation, while that for a large excitation
draws parallelogram-like curves. Thus, it restrains control force amplitude, making full capacity of the
control force.

The performance for MDOF model was discussed by Yamada (2000).

9. Conclusions

Structural control serves us with not only mechanical advantages but also benefits in design and con-
struction. However, a seismic excitation is nonstationary and uncertain and lateral loads amounting to 1 g
influence a structure in an extremely large seismic event. To consider control force size and excitation
nonstationarity, this paper reviews fundamental dynamics with control forces and introduces control
strategies that positively adapt nonlinear effects and excitation influence as follows:

(1) Momentum equations and their modally decomposed forms, state equations and their discrete forms,
and energy balance equations are introduced for the structural dynamics with control force under a seismic
excitation.

(2) The control effects of linear FB controls, i.e., a control force by gain-constant FB of velocity, de-
formation and excitation signals were expressed as changes in structural natural period and damping factor
and excitation participation factor.

(3) In reviewing linear optimal control laws, the excitation influence in control laws was clarified. That is,
the LQRE has a convolution term with future excitation information in addition to the terms provided
by the LQR, which neglects excitation influence or assumes a seismic excitation as a white-noise. Fur-
thermore, the control law for the LIE is given only by a convolution term with future excitation infor-
mation, while the LQRS is given by an instantaneous counter-reaction term and a FB term.

(4) A control strategy using a state equation model for a seismic excitation was analyzed. It was inferred
that we have three strategies: (i) to dampen responses to the initial state at each moment, (ii) to activate
control force neglecting excitation to a structure, and (iii) to isolate structural natural frequency from the
frequency of the excitation sources.

(5) In introducing optimal control problems under constraints, it was inferred that it is difficult to ex-
plicitly solve the optimization problems by positively considering control force limit, and the Euler
equations for the optimal variable-element control become nonlinear.
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(6) Sufficient stability conditions for nonlinear control laws were introduced. It was shown that a control
law with information FB at all locations where control forces act can be easily stabilized and that an in-
direct control can be more straightforwardly stabilized than a direct control law.

(7) As a simple example of nonlinear control laws, nonlinear velocity FB laws and NMW-type control
forces are introduced.

However, which strategy is the best depends on the conditions and purposes for each project to which
structural control is adopted. That is, we should develop a best control strategy on a case-by-case basis to
suite a project’s conditions and purposes. In those conditions, the results in this paper would be useful. The
authors hope that structural control technologies will be advanced and broadly adopted in our society.

Appendix A. Induction for least quadratic regulator considering excitation influence

Using the minimum principle, the LQRE expressed by Eq. (4.3) is introduced as follows:
Letting A(¢) € R*, Hamiltonian is defined by:

H = x(¢)"Px(t) + u(t)" Qu(t) + At)" {Ax(t) + Bu(t) + Dw(t)}. (A1)
Then, the following equations are satisfied for the optimal values:

X(t) = —0H Jox = —Px(t) — A" A(1). (A.2)

0 = 0H /0u = Qu(t) + B A(1). (A.3)
Thus,

u(t) = —Q 'BTA(1) (A.4)
From Egs. (2.5) and (A.4), we obtain:

x'(t) = Ax(t) + Dw(t) — BQ 'B"A(r). (A.5)
Eqgs. (A.2) and (A.5) can be written as:

2 (1) = Az(t) + Dw(1), (A.6)
where

—~ —1 pT —~
 t) S At B
The initial and end conditions are
x(t) = x0, AMt1) = Pix(ty). (A7)
Thus, we have a two-point boundary problem.

Letting

0(t,7) = exp(,}(;_ 7)) = {011(1, 1) 01(2, r”)

we have:
i . - . A 7BQ713T 011(1, T) olz(t,f)
d¢ 0(t,7) = 40 = {—P —AT 05 (t,7) O0xn(t,7) |’ (A8)

where
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o0 = [l deto] 10 0]

Thus, the solution of Eq. (A.6) is expressed by:

z2(t) = —0(t1,0)z(ty) — /tl 0(t,7)Dw(t)dt = 0(¢,t)z(t;) + /, 0(¢,7)Dw(r)dz.

That is,

(i} = Lty ol G} [ [ied S {8 prooee
Let us express the above for each component:

x(t) = Oll(t, tl)x(tl) + 012(1‘, tl)l(fl) + /t 011(1, ‘E)DW(‘E)d‘E,

l(t) =0y (l, tl)x(tl) + 022(l, tl)}u(tl) + /t 021(1‘, T)DW(T) dr.

By putting Eq. (A.7) into the above,

x(t) =001 (2, 11) + 0022, 1) Py ]x(t1) + /t011(t, 7)Dw(7)dr,

I

At) = [0 (t, 1) + 0xn(t, 1) Pr]x(t1) + /t()zl(t, 7)Dw(z)dr.

5|

From Egs. (A.13) and (A.14),

l(t) = [021(1, [1) + 022(l, tl)Pl][Oll(t, ll) + 012(t, tl)Pl]fl[x(t) — /t 011(t, ’L')DW(’L’)d’E]

+ / 0, (¢,7)Dw(t) dz.

By letting
S(t) = [021(t,t1) + O (1, 1)P1][011 (1, 1) + 012(1, fl)PlTla

A1) = S(1) /t | 0,1(¢, 7)Dw(t)dt — /tI 05 (¢, 7)Dw(t) dr.
A(t) can be written as:

At) = S)x(t) + £(1).

Next, let us obtain the relations for S(¢) and f(¢).
Let 01 = [011([, ll) —+ 012(t7 ll)Pl], 02 = [021(1, [1) —+ 022(l, tl)Pl], then,

S(t) = 0,0,",
0, = —P0,,(t,t,) — BQ'B 0, (t,t,) + (A013(t,t,) — BOQ "B 0 (t,1,))R

= A(0,,(t,,) + 012(t,1,)Py) — BQ "B (05 (t,1,) + 0x(t,4,)Py) = A0, — BO 'B"0;,

6117

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
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0, = 0, (t,1,) + 0n(t,1,) Py = —PO,, (t,1,) — A" 051 (t,8,) — (PO(t,1)) — AOn(t,1,)) P,
=—P(0,,(t,t;) + 012(t,,)P1) — A" (021 (t,1,) + On(t, 1)) Py) = —PO, — A0, (A.19)
Then,
S'() =0,0," — 0,0,'0,0," = (—P0, — A"0,)0," — 0,0,'(40, — BQ"'B"0,)0,"
=—P—A"0,0," —0,0,'4+0,0,'"BQ"'B"0,0,"
=-P—-A"S(t) - S(t)A+S()BQ 'B"S(1). (A.20)
‘ ‘
)= —S’(t)/ 0, (¢, 7)Dw(t)dt — S(t){oll(t, 1)Dw(r) +/tl 0,,(t,7)Dw(z) d‘c}

41

+ {Ozl(t, t)Dw(t) + /t 0,,(t,7)Dw(z) d‘c}

5|

— (P A"S(1) + S()4 - S())BO'B'S(1)} ( / 0011, 7) Dw(2) dr) — S(O)Dw(1)

- S(t){ /,lt(AO” (t,7) — BQ 'B 0, (1,7)) Dw(1) dr} +0+ /[]t(—PHH (t,7)
— A0, (1, 7)) Dw(x) d}
={4A" - S(t)BQlBT}{S(t) /n t011(t, 7)Dw(t)dt — /t t 0, (t,7)Dw(t) d‘c} — S(1)Dw()
= —{A" — S(t)BQ'B"}f(t) — S(t)Dw(z). (A.21)
And, the end conditions are:
S(t) = [021(t1,11) + O (11,61 P1][001 (11, 11) + 01211, 61)Py] " = [0+ IP\ ][I +0P,] ' = Py, f (1))
— S() / " 00 (1) Dw(z) dr — / " O, 2) Dwo(t) dr = 0. (A22)

Therefore,

u(t) = —Q ' B'(S(1)x(1) + £ (1)), (A.23)
where S(¢) and f(¢), and their end conditions are given by Eqgs. (A.20)-(A.22), respectively.

Appendix B. Induction for least input energy

The followings are the induction for the LIE expressed by Eq. (4.28).
The Hamiltonian is defined by:

H = x(¢)" PDw(t) 4+ A(t)"{Ax(¢) + Bu(t) + Dw()}. (B.1)
Then, the optimal values satisfy:

X(t) = —0H Jox = —PDw(t) — ATA(2), (B.2)

0 = —0H /ou = B A(t) + 2Qu(t). (B.3)

Then,
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u(t) = =30 'BTA(1) (B.4)
The end condition for Eq. (B.2) are:
l(ll) =0.

Thus, A(¢) is expressed by:
n
iMt) = / E(t — 1) PDw(1)dx, (B.5)
t

where Z(¢) = exp(t4).
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